FLOW STABILITY OF A FLAT PLASTIC RING
WITH FREE BOUNDARIES

8. V. Serikov UDC 539.411

The problem of two-dimensional unstable flow of an ideally plastic ring acted upon
by internal pressure is formulated, The determination of the law of motion for the
boundaries and of the time change of pressure is reduced to an ordinary nonlinear dif-
ferential equation of the second order. For this equation a particular solution of the
Cauchy problem is determined; this corresponds to a widening of the ring boundaries
with a negative acceleration. For the field of initial velocities an estimate from above
is available, expressed in terms of the original parameters. The very particular un-
stable flow obtained for an ideally plastic ring is also investigated with respect to sta-
bility to small harmonic perturbations of the velocity vector, the pressure, or the
boundaries of the ring. It is shown that the fundamental flow is stable irrespective of
the wave number. This result has been obtained by assuming that the inertial forces in
the perturbed flow are small compared to the lasting ones.

1. A two-dimensional deformation problem is considered of a plastic ring acted upon by internal
pressure P(f). There is no pressure at the outer boundary of the ring.

The components of the stress tensor oy, ¢ 6 Tro and of the velocity vector Ve VO satisfy in polar
coordinates r, 8 the eguations of motion for a continuous medium outside the field of mass forces, namely,
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where p denotes the density of the material.
The equation of state of the plastic medium is adopted in the form
(0g — 0,)% 1412 = 4K?2, (1.2)

where K > 0 is the plasticity constant. Moreover, it is also assumed that the principal directions of the
stress tensor are identical at every point of the medium with the principal directions of the deformation
rate tensor whose components are expressed by means of the following equalities:

&= a:rr eq = ’}E:i+ + (1.3)
2y = 1o (2] + L 5r
The assumption that the medium is incompressible yields the well-known relation
g, + eg=0. (1.9
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The dynamic condition ) B
07-:"‘ P (t) fOI' T=RI,

(1.5)
0,=0for r=R,
on the boundaries of the ring must be satisfied, as well as the kinematic condition,
' dR;
o Ur for.  r=R; (j=1,2). (1.6)

The 'ring is formed by two concentric circles of radii Ry and R, (Ry< R,).

In the case of axial symmetry of the ring flow the solution of the boundary-value problem (1.1)~(1.6)
is given by the following expressions:

T,6=0; vp=0; y,6=0; 1.m
. 1 —2 —2
0, = — (pa + 2K) In Ry/r +—-pa® (X > — Ry %); (1.8)
0p=0,-2K; v,=ar—!; gg= — e,=qar—2.
In the above one has ,
. 1 -y _
P = (pa -+ 2K) In Ry/R, ——- pa® (B — Ry'%); (1.9)

a(t)=]%1R1; RIR1=R2R2;

R;=Rjo, Ii;j=Vjo for t=0; (1.10)

Rjo» Vjo are the initial radius and the widening rate of the ring boundaries, respectively; the dot signifies
the differentiation with respect to time t= 0. By virtue of the kinematic condition (1.6) one has for the ini-
tial values the ratios

_ Rog/Ryg=V14/ Voo, (1.11)
and in view of incompressibility at any time instant one has the equality
R — R} = R}y — R};. (1.12)

If the pressure function P(t) is known then the relations (1.9)-(1.12) determine the flow of the widen-
ing ring. The problem of finding one of the radii R, (t) reduces to the Cauchy problem for a nonlinear dif-
ferential equation of the second order whose exact solution involves basic mathematical difficulties.

However, the inverse prbblem can be considered, that is, one can construct-a rule for the motion of
the ring boundaries which would satisfy the conditions (1.10)~(1.12), the pressure change within the ring
being obtained from (1.9) if Ry(t} and R,(t) are given.

A simple verification shows that if the radii satisfy the expressions
V. \4/2 A
H,.:RJ-O(HzF{Lt); (1.13)
] 70 !

R =V, LI
J J0 lf]-
then the eonditions (1.10)-(1.12) are fulfilled.
Then bearing in mind that a(t) =0 the pressure Within the ring is obtained from (1.9) by the formula

P = 2K In Ry/R, — oy (RT* — R7%); (1.14
oy = —é— pVHR.
Since at the initial time instant one has P(0)=P,= 0therefore in accordance with (1.14) one hasto im-
pose a constraint on the initial widening rate of the inner boundary of the ring, namely,
Vie < Vs

Kins 2
Vo= 2 _.._“igT .
p(l—xo )
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stq=Ray/ Ryp- (1.15)

If Vy,=V, then Py=0 and the ring flow takes place inertially in accordance with the given velocity
field, I, however, V;;< V,, the exact solution (1.13) and (1.14) admits the following interpretation: at the
initial instant, in the plastic ring with radii Rjy(Ry(< Ry there is given a velocity field Viol Vi > Vo within
which there is a specified pressure P,> 0 indispensable for plastic deformation of the ring. For t=0 the
ring widens and the flow rate of the ring boundaries diminishes in the course of time. Moreover, the pres-
sure within the ring is reduced to zero fort— o,

2. The constructed particular solution of an unstable flow of the plastic ring is now investigated as
regards stability relative to small perturbations of the flow rate, of pressure, and of the ring boundaries,
Two cases can be distinguished: V3=, Vi< V,.

Let
g 0, ¥, ’ 0 . *
Up = U, - Uy Vg = Up - Vp; (2 1)
v ’ * -
0" =g%+-o%; Ry=R; +R;,

where the fundamental flow carries the superscript zero; vy, v, are the particle velocities in the per-
turbed flow; R'j is the radius of the perturbed boundaries; o' is the arithmetic mean of fundamental stresses
of the perturbed flow.

Since the elementary perturbations v*y, v¥;, ¢ *, R* are slow one can expect that the motion of the
ring with perturbed boundaries differs only slightly from the flow of the concentric ring. Therefore, it can
be assumed [1] that the principal direction of the flow in the perturbed motion which corresponds to the
tangent direction to the perturbed ring surface makes only a small angle 6 ' with the principal direction of
the unperturbed ring. In accordance with the transformation formulas for the components of the stress
tensor and of the strain rate tensor in polar coordinates, as well as by using the method of [2] for linear-
ization of stresses and strains, one obtains expressions for the components of the stress tensor of the per-
turbed motion in the form

’ 0 0 )
0, = Oy - G*; Og = 0 4 0%, (2.2)

L3 &
’ = 10 ﬁ.’ie____l. v*_av_r .
Treg = ar r o TR

= K /(e —€l).

1

Since the medium under consideration is incompressible one obtains from (1.3), (1.4, and (2.1)
a % Fi] . %
- (ve) +- — (roy) = 0.
Hence it follows that there exists a sufficiently smooth function y(r, 6, t), such that the relations are valid,
x - 1 oy
Ug = —~; Vr:_T—V- (2-3)

By linearizing Eq. (1.1) and using (2.1)~(2.3) and ignoring the inertia terms in the perturbed equations
of motion one obtains

go* 4 r—iﬁfg =0
ar BL] ! (2 4)
_{da* 4, 0D

a0 ! 2 (1) or O

In the above one has
= 10[5_"’76 - 1_(01 “_i/ﬂ

or? r (2.5)
1t should be mentioned that the assumption with regard to the smallness of the inertia terms in the
perturbed equation of motion is more justified for the particular solution under consideration in which one

had the estimate from above for the initial velocities field than, for example, in [1, 2].
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Having transferred the stresses o'y, 0"y, T,y onto the unperturbed boundaries the boundary con-
ditions (1.5) on the curvilinear surfaces of the perturbed ring are given by

Opcos (', v) + Tre 08 (y',v) =0 for r=Ry; (2.6)
T, COS (@', v) + 0,'. cos(y,v)=-—P' for r=R,:
17;9 cos (z’, v) + 0, C0S @,v)=0 for r=R,,

where (X', y') is a rectangular coordinate system with origin on the unperturbed surface of the ring; v is
the outer normal to the perturbed boundary.

1 OR;

Since cos (x', ¥) =sin(y', v), where tan (v, v) = T and since the perturbation is small one ob-
J
tains
, 1 oR; .
cos(z,v)zﬁ—;—ae—; cos (y', v)=1. 2.7

Consequently, it follows from: (2.1)-(2.3), (2.6)-(2.7), and using the parameter relation of the fundamental
flow that for V,,< V, one has

oR:

0 % i _ _ AL
T 0 =0 (r=R); 2.8)
e _op (Bl BN\ . [ 2B R
o* — 9K (\R—l —;—> 20, (\Rz 7R 7{%) (r=R,):
o* =0 (r=R,).

If V4=V, then ¢ * =0 on both boundaries of the ring,
The kinematic condition (1.6) for the perturbed flow is given by (see [3])
[

4R} ey Y .
o il TTrpt r— R 2.9
a7 w T i=0 r=HR) (2.9)

3. The variables are now changed by

=Tu, 3.1)
* Rmt’ y=In r/R, (

and perturbation of the ring boundaries and of the corresponding pressure is considered,
R} = & (z)sin 0f; o¥=g(z, y)sin ab. (3.2)

Then conforming to the shape of the boundary conditions the solution for the function y(r, 6, t) is sought
in the form
7=9(x, y) cos b, (3.3)
where w=0, 1, 2, ... is the wave number of the harmonic perturbation under consideration.
The dimensionless quantities
1E=1D/V103m; @ = (P/PV%o; K= K/PV%M P = P/PV%o; (3.4)
R;=Rj/Ryy; E;=%;/Ryp; V1=V 1s/Vy; n=Ry/R;

are not introduced. By substituting (3.1)-(3.4) into (2.4) and (2.5) one obtains a system of partial differ-
ential equations with constant coefficients for the functions ¥(x, y) and ¢(x, y), respectively (the bar is now
omitted for the dimensionless quantities):

ot 5 as 60 Y
(,,;4 - 2(0*—2) ?/?/%‘ = =0 (3.5)
i > . }']‘ ;24 o O, o
i = E2s L2 2 ] 5o

The boundary conditions (2.8) now become

0 e . 1 7B 7, .
0§ By o K(”j 2 % ot ) =0 (y=InRy/R,): -

; (3.9)
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Then in the case of Vy;< 1 one has
o =2K P, P=2Klnn—R;2(2—1) (y=0); (3.9)
0f=2K (y=Inx). ‘
If Vy4=1, then 009 =2K, ¢ =0 on both boundaries of the ring. It follows from the kinematic condition (2.9)
that

P ~ R;7Ej = Ry (y:l‘nR]-v/Rl) (3.10)

with the initial condition
for z=0. (3.11)

4. Thus, the relations (3.5)-(3.11) specify a complete problem for the behavior of the harmonic per-
turbation of the velocity vector, pressure, and the ring boundaries with the inertia forces ignored in the
pertubed flow. The equations (3.5) and (3.6) are solved by using the form

4
= z;i Ciexp (niy); 4.1)
4

— —1~ K Z AiCiexp (niy),
i=1

where
ni= + [2— @? £ 2(1 — ®)2]1/2 , (4.2)
ny ="n,, ng=—n, are the roots of the characteristic equation
nt - 2(@? — 2) n’+at=0,
Ai=Ni(n;+2), Ni=nF—2n; + 0% (i=1, 4).
In the case of w=1 the characteristic equation possesses multiple roots n; =ny=1, n,=n,=—1. Without

dwelling specifically on this case one can only mention that for w =1 and w > 1 the finite results coincide.
Subsequently, n; will be considered as being different.

By substituting the relations (4.1) into the boundary conditions (3.7) and (3.8) an algebraic system of
linear equations of the fourth order is obtained for the time functions Cj(x):

&

21 NCi=fy fy=—hoRe (1 — o) @.3)
=

E \TCL/ i *‘fl)y 8 = —*4(!)R3_1§2;

“u

af . R s
AIC‘L =fg fa=— 4oR; ! li’/-; —& + 5K (‘52 —¥% E::.]) ; 21 AiCin™i = 0.
=

14-

I

i

In the above f(X), m =1, 3 are the functions appearing in (3.7-(3.9) which are given in terms of R, and
in the case of V;3< 1. '

Using the relations

g d " 5
ds] — _lR . R2 e (X%‘!‘ 255)1/2

e :
nj(Re)=E(z),

which hold by virtue of (1.13) one obtains from (3.10) and (3.11) a system of ordinary differential equations
of the first order,

d
d}l‘ + Ri'wen, = on 2‘ Gy (4.9

i=1

d‘h + Ry'n, = o V Cin™

1.—4
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with the initial conditions
i (%) = TI? for Ry=w%g.

Since Ry=R; +§, where § denotes the current ring thickness therefore n=1+¢, € =48/ Ryandfor a
widening ring one has ¢ —~0. The method for finding a solution for ordinary differential equations contain-
ing a small parameter ¢ is suificiently well known (see, for example, [4]). It is noted that the parameter ¢
appears in (4.4) in a regular manner.

The first terms of the asymptotic series

n; = 2 Njq (Rz) g9, fm= Z fmqv(R'z) et

q=0 g=0b

are determined by using the condition ¢ =0 (»=1). K follows from (4.3) and (4.4) that n,=n,,=1, The
latter indicates that if during the main motion the ring transforms into a circle with zero wall thickness
then the amplitude of perturbation of the boundaries is unique. Then from (4.3) one has that f;;=f,;, f;,=0
and to obtain an asymptotic solution the cases Vi< 1, Vy,=1 are identical for ¢ =0. Hence the system (4.3)
is of rank two. By virtue of (4.2) and making use of the relations

NiN,=NN,=N,N,;=N,N,=0; N, N;=40%2 — n, — ny);
NN, =402 — ny — ny);
A=A4; Ay=A,,

A
one obtains N (¢, = 0.
s

i=1

It follows from (4.4) that
| Mo (Ry) = CRy ™, C=const,
and therefore n (R,) — 0 for R,—~. It can similarly be shown that g ji(Rz) —0 for Ry— for any w> 0.

The question whether 7 jq(R;) —0 can be considered further for any ¢ =2 remains unanswered. It is
more expedient to calculate higher approximations numerically,

As it was said above, the asymptotics of the amplitude of harmonic perturbation of the ring bounda-
ries with accuracy up to the second order of smallness with regard to t diminishes to zero (nj(Rz) —0), if
R,—=. It follows from (2.3} and (4.1) that perturbation of the velocity vector and of pressure approaches
zero for ¢ —0. Consequently, the fundamental unsteady flow of a plastic ring is stable as regards small
harmonic perturbations of the velocity vector, of pressure, or of boundaries for any wave number provided
the initial parameters of the problem satisfy the conditions (1.15) and (4.10).

It is known [3] that in the case of a thin ring of ideal incompressible fluid which expands inertially
the harmonic perturbations of the ring boundaries grow without bounds. One can also observe the instabil-
ity of a flow of ideal fluid in a ring acted upon by variable internal pressure [5]. Such instability can be
observed for any «> 0.

If we introduce into our considerations the forces of internal resistance of the medium, say, plastic,
in the presence of an estimate from above for the initial velocity field of the fundamental flow then under
the assumption of small inertia forces in the perturbed motion the main flow investigated above is stable
relative to small harmonic perturbations of the veloeity vector, of pressure, or of ring boundaries for any
wave number,
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