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The problem of two-dimensional  unstable flow of an ideally plastic ring acted upon 
by %ternal  p r e s su re  is formulated.  The determination of the law of motion for the 
boundaries and of the t ime change of p re s su re  is reduced to an ordinary  nonlinear dif- 
ferent ial  equation of the second o rder .  Fo r  this equation a par t icu lar  solution of the 
Cauchy problem is determined;  this cor responds  to a widening of the r ing boundaries 
with a negative accelera t ion.  For  the field of initial veloci t ies  an es t imate  f rom above 
is available, expressed  in t e rms  of the original  pa ramete r s .  The very  par t icular  un- 
stable flow obtained for  an ideally p las t ic  r ing is also investigated with respect  to s ta-  
bility to smal l  harmonic  per turbat ions of the velocity vector ,  the p res su re ,  o r  the 
boundaries of the ring. It is shown that the fundamental flow is stable i r respec t ive  of 
the wave number.  This resul t  has been obtained by assuming that the inert ial  forces  in 
the per turbed flow are  small  compared  to the lasting ones. 

1. A two-dimensional  deformation problem is considered of a plastic r ing acted upon by internal 
p re s su re  P(t}. There  is no p res su re  at the outer boundary of the ring. 

The components of the s t r e ss  tensor  e r ,  e 0 '  rr0 and of the velocity vector  Vr, v 0 satisfy in polar 
coordinates r, 0 the equations of motion f o r  a continuous medium outside the field of mass  forces ,  namely, 

�9 o) 0% i oT,.a . % % [ o~,. 0% 1 0% ~ (1.1) 
-aT-+-7--ag-i-  ,. = , o k 7 7 - k ~  T,- } ,- % o--5----7 ; 

t 0% &,.o , 2~-o [o% + o% • I a,'o v,% 
7 - - g g  + -7-,- ~- -7 -  = ,o \-7F v~-77-~ ' 7v0-aTo + -7-" / ,  

where p denotes the density of the mater ia l .  

The equation of state of the plastic medium is adopted in the form 

(oo - -  ~ ) ~  + 4@0 = 4K ~, (1.2) 

where K > 0 is the plastici ty constant.  Moreover ,  it is also assumed that the principal  direct ions of the 
s t r e ss  tensor  are  identical at every  point of the medium with the principal directions of the deformation 
rate  tensor  whose components a re  expressed by means of the following equalities: 

aVr t 0% v,. 
e~ = -aT; so = -7- ~ + -7 ;  (1.3) 

2y,o=r ~ (.~.) t 0% 
Or @ r O0 " 

The assumption that the medium is incompressible  yields the well-known relat ion 

e~ @ e0=0. (1.4) 
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The dynamic condition 

(~r=-- P (t) for r=Rl~ (1.5) 
Or=0 for r=B~ 

on the boundaries  of the r ing must  be sat isf ied,  as well  as the kinemat ic  condition, 

dBj  
ot = vr f0v r = B j  (j=l,2).  (1.6) 

The r ing is fo rmed  by two concentr ic  c i r c l e s  of radi i  R~ and R 2 (R 1 < R2). 

In the case  of axial  s y m m e t r y  of the r ing flow the solution of the boundary-va lue  prob lem (1.1)-(1.6) 
is  given by the following express ions :  

%.0=0; vo=O; ~,.o=0; (1.7) 

t 2 gr = - -  (pa + 2K)lnB~/r + "-':2" pa (r - z -  B2z); (1.8) 

o0=zv+2K; vr=ar-1; ~ e = -  e~.=ar -2. 
In the above one has 

t P = (pa + 2K) In B2/B 1 - - T  Pa2 (B~-Z - -  B~-2); (1.9) 

a(t)=B1R1; hlRI=/~2R~; 

Rj=gio , /~ j=Vio  for t=0;  (1.10) 

Rio, Vjo a re  the initial radius  and the widening ra te  of the r ing boundaries ,  respec t ive ly ;  the dot signifies 
the differentiat ion with r e spec t  to t ime  t -> 0. By vir tue  of the kinemat ic  condition (1.6) one has for  the ini- 
t ia l  values the ra t ios  

R2o/ Rlo = Vlo/ V2o , (1.11) 

and in view of incompress ib i l i ty  at any t ime  instant one has  the equali ty 

R 2 /r = R220- Bt0. (1.12) 2 - -  

If the p r e s s u r e  function P(t) is known then the re la t ions  (1.9)-(1.12) de te rmine  the flow of the widen- 
ing r ing.  The p rob lem of finding one of the radii  R+.(t) reduces  to the Cauchy p rob lem for  a nonl inear  dif-  

J 
fe ren t i a l  equation of the second o rde r  whose exact  solution involves basic  ma themat ica l  diff icult ies.  

However,  the inverse  prob lem can be considered,  that  is,  one can construct  a rule  for  the motion of 
the r ing boundar ies  which would sa t i s fy  the conditions (1.10)-(1.12), the p r e s s u r e  change within the r ing 
being obtained f rom (1.9) if Rl(t) and R2(t) a r e  given. 

A s imple  ver i f icat ion shows that ff the radi i  sa t is fy  the express ions  

B j = B j 0 ( t +  VJ~ \!/2 2 ~jo t ) ,  (1.13) 

/~j = V. Bj0 

then the conditions (1.10)-(1.12) a r e  fulfilled. 

Then bear ing  in mind that a(t) = 0 the p r e s s u r e  within the r ing is obtained f rom (1.9) by the formula  

P = 2 K lnBJBx  --  o~ o (/~-2 __/{~2); (1.14) 

l 2 2 ao = -~- pV~0Bt0. 

Since at the initial t ime  instant one has P(0)=P0-> 0 the re fo re  in accordance  with (1.14) one has to i m -  
pose a constra int  on the initial widening ra te  of the inner boundary of the ring, namely,  

V~o ~ Vo; , 

V 0 = 2 [ p  Kin• ~ ]~/2; 
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X o = R ~ o / R l o .  (1.15) 

If Vt0 =V 0, then P0 = 0 and the r ing flow takes place inert ial ly in accordance  with the given velocity 
field. If, however, V10< V0, the exact solution (1.13) and (1.14) admits  the following interpretation: at the 
initial instant, in the plastic ring with radii  Rj0(R10< R20) there  is given a velocity field Vj0(V10 > V20) within 
which there  is a specified p res su re  P0 > 0 indispensable for  plastic deformation of the ring. For  t-> 0 the 
r ing widens and the flow ra te  of the r ing boundaries diminishes in the course  of t ime.  Moreover ,  the p res -  
sure  within the r ing is reduced to ze ro  for  t--" oo. 

2. The constructed par t icular  solution of an unstable flow of the plastic ring is now investigated as 
r ega rds  stabil i ty relat ive to smal l  perturbations of the flow rate ,  of p ressure ,  and of the ring boundaries.  
Two cases  can be distinguished: Vt0 =0, Vt0< V0" 

Let 

= = ~ v0; (2.1) 

where the fundamental flow c a r r i e s  the superscr ip t  zero;  V'r, v'0, a re  the part icle velocit ies in the pe r -  
turbed flow; R'j is the radius of the per turbed boundaries;  a '  is the ar i thmet ic  mean of fundamental s t r e s ses  
of the per turbed flow. 

Since the e lementary  perturbations V ' r ,  v* 0 , ~ *, R*j are  slow one can expect that the motion of the 
r ing with per turbed boundaries differs only slightly f rom the flow of the concentr ic  ring. Therefore ,  it can 
be assumed [1] that the principal  direction of the flow in the perturbed motion which cor responds  to the 
tangent direction to the per turbed r ing surface  makes  only a small  angle 0 ' with the principal  direction of 
the unperturbed ring. In accordance  with the t ransformat ion  formulas  for the components of the s t ress  
t ensor  and of the strain rate tensor  in polar coordinates,  as well as by using the method of [2] for  l inear-  
ization of s t r e s se s  and s t ra ins ,  one obtains expressions for the components of the s t r e s s  t ensor  of the pe r -  
turbed motion in the fo rm 

' 0 I o r = o r T 6 * ;  ~ 0 = ~  (2.2) 

I" ( �9 OVO t * O~ 
%'0 = ~0 Or --r VO - -  -0-0}  ; 

~o = K. , (eo  _ eo). 

Since the medium under considerat ion is incompress ib le  one obtains f rom (1.3), (1.4), and (2.1) 

+ w (rvr) = o. 60 

Hence it follows that there exists  a sufficiently smooth function • (r, 0 ,  t), such that the relations are  valid, 

�9 o X .  �9 '1 o z ( 2 . 3 )  VO= 0--7, Vr ~ r ~-'" 

By l inearizing Eq. (1.1) and using (2.1)-(2.3) and ignoring the iner t ia  t e r m s  in the per turbed equations 
of motion one obtains 

Or ~ ~- = O; (2.4) 
--i c~* , cOO 

r -~O--~-2r--i(I)+-~r =0 .  

In the above one has 

a) = L ~ - -  "7- \ -~7 + r aO'}]" (2.5) 

It should be mentioned that the assumption with regard  to the smallness  of the inert ia  t e r m s  in the 
per turbed equation of motion is more  justified for the par t icu lar  solution under considerat ion in which one 
had the est imate f rom above for  the initial veloci t ies  field than, for example, in [1, 2]. 
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Having t r a n s f e r r e d  the  s t r e s s e s  ~ '  r ,  ~ ' 0 ,  w~:0 onto the u n p e r t u r b e d  b o u n d a r i e s  the bounda ry  con -  
di t ions  (1.5) on the  c u r v i l i n e a r  s u r f a c e s  of  the  p e r t u r b e d  r ing  a r e  g iven  by  

C;oCos(x', v) + mrocos(g' ,  v) = O for r = B j ;  (2.6) 

~rO C Os (x', v) -~ C~r COS (g', v) = --: P '  for r = R~; 

~r0cos (x', ~) + or cOS (g', V) = 0 for r =/72, 

w h e r e  (x ' ,  y ' )  is  a r e c t a n g u l a r  coo rd ina t e  s y s t e m  with  o r ig in  on the  u n p e r t u r b e d  s u r f a c e  of the  r ing;  v is 
the ou t e r  n o r m a l  to the  p e r t u r b e d  bounda ry .  

t 8B~ 
Since cos  (x ' ,  v) = s i n ( y ' ,  v ) ,  w h e r e  tan  (y', v) -- ~ ~o, 

r a ins  

and s ince  the  p e r t u r b a t i o n  is  s m a l l  one ob -  

cos (x', t - -  ~ -~-; cos (g', v) ~ t. (2.7) 

Consequent ly ,  it fo l lows f r o m  (2.1)-(2.35, (2.6)-(2.7),  and us ing  the p a r a m e t e r  r e l a t i on  of the  fundamen ta l  
flow that  f o r  Vt0< V 0 one has  

~o 1 OR~ 
e/~j v0 ' ~ = 0  ( r = R j ) ;  (2.8) 

{'s~.7;'<:) ( o R ~  _oRTk s+. = 2 %  ( r=n , ) ;  

o* = 0  (r=/L_). 

If V10=V0, then ~ * =0 on both boundaries of the ring. 

The k i n e m a t i c  condi t ion (1.65 fo r  the p e r t u r b e d  flow is  g iven by ( see  [315 

aRi;_ --  r--i ~g'Z 0vT_ R~ = 0 (r = Rj). (2.95 
at O@ Or 

3. The  v a r i a b l e s  a r e  now changed by 

v~0 t. (3.1) 
x = ~'~o ' g = l n  r,lR 1 

and p e r t u r b a t i o n  of the r i n g  b o u n d a r i e s  and of the  c o r r e s p o n d i n g  p r e s s u r e  is  c o n s i d e r e d ,  

R~ = ~ (x) sin coO; ~* =cp(x, g) sin o~0. (3.25 

Then  c o n f o r m i n g  to the shape  of the  boundary  condi t ions  the  solut ion  fo r  the  funct ion X (r ,  0 ,  t) is sought  
in the  f o r m  

Z=~(x,  g) cos o)0, (3.3) 

w h e r e  w = 0, 1, 2, ... is the  wave  n u m b e r  of the h a r m o n i c  p e r t u r b a t i o n  under  c o n s i d e r a t i o n .  

The  d i m e n s i o n l e s s  quan t i t i e s  

~ = , l V ~ o R ~ o ;  ~ = ~lpV~0; K = KlpV~o;  -P = PlpV~o;  (3.4) 

R ~ = R j l R ~ o ;  - - -~  �9 - ' "  ~S--~s/Rlo, Vlo=Vlo /Vo;  ~ = R ~ I R ~  

a r e  not in t roduced .  By subs t i tu t ing  (3.1)-(3.45 into (2.4) and (2.5) one obta ins  a s y s t e m  of pa r t i a l  d i f f e r -  
en t ia l  equat ions  with cons tan t  coe f f i c i en t s  fo r  the funct ions  r  y) and (p(x, y), r e s p e c t i v e l y  (the b a r  is now 
omi t t ed  f o r  the  d i m e n s i o n l e s s  quant i t ies ) :  

~,~, 
2 (~o ~- - -  ) ~ - -  o)':q~ = O; (3 .55  

\ 

The  boundary  condi t ions  (2.8) now b e c o m e  

o ~o ~ i K ( ~ 2  r , ) ~  op~ / : :  0 ( g = l n R j R 1 ) ;  
% T , ' j ; J -  ~ t-'~y~ -T / 

r 2K ~.o )-:- 2 t ':  - - R '  ~ ( g = 0 ) ;  

q=O (g=ln  z). 

2 3 2  

(3.7) 

(3.s5 



Then in the  c a s e  of V~0< 1 one has  

o~ = 2 K - - P ;  P = 2 K l n u  - -  R 2 2 ( ~  ~ -  t )  ( g =  0); (3.9) 

(~ =- 2K (g = In • 

If  Vt0 =1 ,  then a ~ =2K, ~p =0 on both  b o u n d a r i e s  of  the r ing .  It fol lows f r o m  the k inema t i c  condit ion (2.9) 

tha t  
d~j ~ _~ - i ,  
=--oz ' //~ -~ = ~,~R~. ~2 (Y=I'nRJ/Bx) (3.10) 

with the  ini t ial  condi t ion 

~ j = ~  for x=0.  (3.11) 

4. Thus ,  the r e l a t i ons  (3.5)-(3.11) spec i fy  a comple t e  p rob l em fo r  the  b e h a v i o r  of the h a r m o n i c  p e r -  
t u rba t i on  of the ve loc i ty  ve c t o r ,  p r e s s u r e ,  and  the r i n g  boundar ies  with the  ine r t i a  f o r c e s  i gno red  in the 
pe r tubed  f low. The  equat ions  (3.5) and (3.6) a r e  soIved  by us ing  the  f o r m  

4 
= .~ Ciexp (niy); (4.1) 

4 

m~ = - -  -~  K X AiCiexp (nly), 
i=l  

w h e r e  

m =  • [2-- 0) 2 • 2(1 - -  o~2)VZlV 2, 

n I =--n2, n 3 =--n 4 a r e  the  roo t s  of the c h a r a c t e r i s t i c  equat ion 

n 4 +  2(~ ~ - -  2) n~'+~-=O, 

Al=N~(n~+2), N~ = n~--2n~ + o) ~, ( i=1,  4). 

(4.2) 

In the case  of  w =1 the  c h a r a c t e r i s t i c  equa t ion  p o s s e s s e s  mul t ip le  r o o t s  nj =n 3 =1, n z =he = - 1 .  Without 
dwel l ing spec i f i ca l ly  on th i s  c a s e  one can only ment ion  tha t  f o r  c0 =1 and w > 1 the f ini te  r e s u l t s  co inc ide .  
Subsequently,  n i will  be c o n s i d e r e d  as  being d i f ferent .  

By subs t i tu t ing  the r e l a t i o n s  (4.1) into the boundary  condi t ions  (3.7) and (3.8) an a lgeb ra i c  s y s t e m  of 
l inea r  equat ions  o f  the four th  o r d e r  is obta ined f o r  the t ime  funct ions Ci(x): 

& 
P ~=I:Y{C{ =/1 ,  ft = --4coR2 -t• ( i -  TU)-*;  (4.3) 

t~ 

4 4 

In the above fro(x), m =1, 3 a r e  the funct ions  appea r ing  in (3.7)-(3.9) which a r e  given in t e r m s  of R 2 and u 
in the e a s e  of  V~0 < 1. 

Us ing  the r e l a t ions  

d~j dqj 
e--T. = - ~  R~-~; & = ( ~ +  2~Y~ 

which  hold  by v i r tue  of  (1.13) one obtains  f r o m  (3.10) and (3.11) a s y s t e m  of  o r d i n a r y  d i f fe ren t ia l  equat ions  
of  the  f i r s t  o r d e r ,  

dql 
dRu + ~ i z % ' l l  = C0~r Z Ci; (4.4) i=l 

ti 
dq2 

dR:  + R2t 'qz ~" ~) Z C~zat 
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with the initial conditions 

Since R 2 =R 1 +6,  where 6 denotes the cur ren t  ring thickness therefore  ~ = 1  +e ,  ~ = 6 / R  1 and for  a 
widening ring one has ~--0 .  The method for finding a solution for  ordinary differential  equations contain- 
ing a small  parameter  a is sufficiently well known (see, for  example, [4]). It is noted that the pa ramete r  
appears  in (4.4) in a regular  manner .  

The f i rs t  t e rms  of the asymptot ic  ser ies  

co 

q = 0  

are  determined by using the condition e : 0 (~ =1). 

co 

q~lD 

It follows f rom (4.3) and (4.4) that ~ 10=~? 20 =77 0- The 
lat ter  indicates that ff during the main motion the ring t r ans fo rms  into a c i rc le  with zero  wall thickness 
then the amplitude of perturbat ion of the boundaries is unique. Then f rom (4.3) one has that f~0 =f20, f30 = 0 
and to obtain an asymptotic solution the cases  V10< 1, V~0=l are  identical for  ~ =0. Hence the system (4.3) 
is of rank two. By virtue of (4.2) and making use of the relat ions 

N~ N~= NaN 4 = N1N 4 = N~N3 = O; 

N~N4=4r -- nl -- n~); 

AI=A~;  A~=A4,  

N1N3=4r -- nl -=- n~); 

one obtains 
4 

~ Ci=O. 

It follows f rom (4.4) that 

'1o (R~) = CR{ -t, C=const, 

and therefore  ~ o(R2)- 0 for R 2 ~ ~r It can s imi lar ly  be shown that ~/jl(R2)--*0 for  R2~r162 for  any w > 0. 

The question whether ~jq(R 2) ~ 0  can be considered fur}her for  any q>- 2 remains  unanswered.  It is 
more  expedient to calculate higher approximations numerical ly .  

As it was said above, the asymptot ics  of the amplitude of harmonic perturbation of the ring bounda- 
r ies  with accuracy  up to the second order  of smallness  with regard  to t diminishes to zero  (~Tj(R2)---~0), if 
R 2~ ~. It follows from (2.3) and (4.1) that perturbation of the velocity vector and of pressure approaches 

zero for ~0. Consequently, the fundamental unsteady flow of a plastic ring is stable as regards small 

harmonic perturbations of the velocity vector, of pressure, or of boundaries for any wave number provided 

the initial parameters of the problem satisfy the conditions (1.15) and (4.10). 

It is known [3] that in the case of a thin ring of ideal incompressible fluid which expands inertially 
the harmonic perturbations of the ring boundaries grow without bounds. One can also observe the instabil- 

ity of a flow of ideal fluid in a ring acted upon by variable internal pressure [5]. Such instability can be 

observed for any w > 0. 

If we introduce into our considerations the forces of internal resistance of the medium, say, plastic, 
in the presence of an estimate from above for the initial velocity field of the fundamental flow then under 

the assumption of small inertia forces in the perturbed motion the main flow investigated above is stable 

relative to small harmonic perturbations of the velocity vector, of pressure, or of ring boundaries for any 
wave number. 

1~ 

2. 

3. 
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